Scientific Report No. >

Contrel Theory Group fl

S
i

P—— ’(\L‘
e R € ¢ e
25 ’ | Em . Ly R ol

<

I e S

PACILITY PORM €02

THE UNIVERSITY OF TENNESSEE

DEPARTMENT OF ELECTRICAL ENGINEERING
b of _f

A NEW MEASURE OF POLE
SENSITIVITY OF FEEDBACK SYSTEMS

by
\\ J. C. Hung

A

w
2 Ay
e« S
=8
L)
v
=
© s B
= Supported by National Aeronautics and Space Acdminisiration
= é under Grant No. NsG-351.
O
o O
TR
x 2

|
N64 2895 1 -
S Vi

k- 55239 ;7

(NASA CR OR TMX OR AL NUMBER) (CATEGGRY)

: o




A NEW MEASURE OF POLE
SENSITIVITY OF FEEDBACK SYSTEMS
J. C. Hung

The research reported here was supported by the National
Aeronautics and Space Administration under Research Grant NSG-351.

This support is gratefully acknowledged.

THE UNIVERSITY OF TENNESSEE
ELECTRICAL ENGINEERING DEPARTMENT
KNOXVILLE, TENNESSEE




INTRODUCTION

Engineers have long been using the term "sensitivity" to denote
a quantitative measure of the variation of one system parameter due to
variation of another system parameter. Different mathematical de-
finitions of sensitivity have been proposed by Bodel, Truxalz, Ur3
and Chang4 for different purposes. However, it will be shown that these
definitions are not always convenient for practical engineering uses.
For instance, does a sensitivity equal to zero really imply the complete
insensitiveness of a system? And, does a measure of infinite sensi-
tivity truly mean an infinite change of one system parameter with re-
spect to a finite variation of another parameter?

For engineering purposes, a good definition of sensitivity
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easure should have the following qualities:

1. significance

2. reliability

3.£;§ nvenience in use

;Ztggé Aﬁject of this paper is to review the various definitions of

"sensitivity'", and to propose the more satisfactory mathematical de-
finitions of the "pole sensitivity of a feedback system" (hercafter
called "pole sensitivity" for simplicity) for engineering applicationms.

A mathematical definition of pole sensitivity which is more con-
venient for engineering application will be proposed. The merits of
these definitions and their practical reliability will also be demon-

strated.



REVIEW OF CURRENT LITERATURE ON SENSITIVITY FUNCTIONS

Bode1 and Truxal2 have defined the sensitivity function as

dQ
Q_d1nQ _ Q
Sx T dInx  dx 1)
X

which gives the variation of a parameter, or a function, Q due to the
variation of another parameter, or function, x. This definition was
originally created as a measure of relative variation between the
closed-loop gain and one open-loop parameter of a feedback system.
Attempting to use Eq. (1) as a pole sensitivity such that Q
may represent any closed-loop pole and x any open-loop parameter gives
difficulties under certain conditions. These difficulties will be
indicated in the following:
Consider a closed-loop system, Fig. 1, having an open-loop trans-

fer function.

G(S) = .._K_QS_L (2)

s
p(s)
where K is the gain constant and q(s) and p(s) are polynomials in s.

The closed-loop transfer function is

_c - Kq{s) _ _Kq(s)
16 =3 = 3@ + ke " R )

Since the dynamic characteristics of a system are largely dependent on
the system's pole locations, it is very often desired to know the vari-
ation of the closed-loop poles of a feedback system due to the variation
of the open-loop gain constant, or time constants (or equivalently,
open-loop poles or zeros).

The pole sensitivity, as defined in Eq. (1), for the variation of
a closed-loop pole due to the variation of the open-loop gain, open-

loop pole or open-loop zero is as follows. Let Sj represent the closed-

loop poles and K, c&i, Bi’ represent the open loop gain, open-loop
poles, and open-loop zeros, respectively. And let S;j, i;j, and S;j
i i

represent the sensitivity functions of sj with respect to K, cxi,

and Bi’ respectively. Then (see Appendix I)
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e <[C) N (7)
s, d ., I
] '&"’ (s) l

s
J

r, is the multiplicity of the open-lecop pole 0&, and u, is the multi-
plicity of the open-loop pole Bi. Note that when sj is a simple pole
of the closed-loop function T(s), ks, is just the residue of T(s)
evaluated at s = s,. J

When sj is a multiple pole of T{s), ks-’ as given by Eqs.(7)
becomes infinite. Therefore, Eqs. (4), {(5) a%d (6) are not defined.
The infinite change of a closed-loop pole due to a differential change
of any open-loop parameter is very often a poor approximation for an
incremental change of this same open-loop parameter. Therefore, sensi-
tivity measures obtained from Eqs. (4), (5) and (6) often appear to be
inconvenient for the practical engineering use. The following example
will illustrate this inconvenience.

Consider the feedback system shown in Fig. 1. The open-loop

transfer function and the closed-loop transfer function are

25
() = <EF 0 ®
T)(s) = (s) = — 22— ©)

(s + 5)2



respectively. The unit-step response of Eq. (9) is

-5t 5t

c (t) =1-e - 5t e (10)

Assuming that the open-loop pole is changed 20% from its original value,

one then obtains

¢'() = ST an
T'(s) = %(s) - — 2> (12)

s + 12s + 25

and the new unit-step response of Eq. {12) is

e'(t) = 1 - 1.58-2.683t + O.Se-9'317t (13)

Egs. (10) and (13) are plotted in Fig. 2, which indicates a change of
about 147 in the rise time response of the closed-loop system due to a
207% change of the open-loop pole. However, in using Eqs. (4), (5) or
(6) one finds that the sensitivity of the closed-loop pole at s = -5 is
infinity, indicating an unlimited change in the closed-loop charac-
teristics due to a very slight change of any open-loop quantity. This
shows that the sensitivity functions defined in Egs. (4), (5) and (6)
are indeed inconvenient when the closed-loop transfer function possesses
multiple poles.

Furthermore, when a pole Sj of tha closed-loop transfer function
is at the origin, as is often the case in a sampled-data control system,
all sensitivity measures obtained from Eqs. (4), (5) and (6) are again
infinity.

Now, consider a sampled-data system as shown in Fig. 3 where

1.2275(1 - 0.8332°1)

G(z) = , (14)
a -z h?
and
-1 -1
T(z) = l.Zz (1 - 0.?%32 ) 15)
(1 -0.82z 7)

L ]
which has a pole at the origin., The unit-step response as shown in



Fig. 4 is
C(z) = 1.2z 1 + 1.162°% + 1.1282"
6 7

3 4 5

+ 1.10242"

+1.042278 4 —o, (16)

+ 1.082z

+ 1.0525

If open-loop gain is changed by 207, the above equations become

+ 1.0656z

1.442"1(1 - 0.8332° 1

G'(z) = — s (17)
a-zhH2

1.442"1(1 - 0.83327Y)

T'(z) = — o = (18)
1 -0.56=z" - 0.2z

and ’
, -1 -2 -3 -4
C'(z) = 1.442" " + 1.04642"2 + 1.113982z" > + 1.073122

-

+1.06368z> + 1.05026z ° + 1.01736277 + 1.007692™° + ---.
‘ (19)

Again referring to Fig. 4 and comparing c(nT) with c'(nT), one can
easily see that the change of the closed-loop characteristics due to a
207 change of open-loop gain, is not as detrimental as that implied by
the infinite sensitivity obtained by using Eq. (4).

Finally, one can easily see from Eqs. (5) and (6) that when the
open-loop function has a pole, or zero, at the origin the sensitivity
of the closed-loop pole due to a variation of this open-loop pole, or
zero, is zero; thus indicating a complete insensitivity of the closed-
loop characteristics.

Now again consider Fig. 1 with the following open-loop and closed-

loop transfer functions

2
¢) = <G+ (20)
and
T(s) = 2 (21)
(s + 1)(s + 2)
The unit-step response of the system is then
c(t) =1 - 2075+ 7 2F (22)

If the open-loop pole at the origin drifts to s = -0.2, Egqs. (20), (21)



and (22) then become,

: 2
1 -
A I (23)
. B 2
T'(s) = —3 (24)
s + 3.1s + 2.3
and c'(t) = 0.8696 - 1.1e70237t 0.2305e‘2'563t,_ (25)

Comparing Eqs. (22) and (25), which are plotted in Fig. 5, indicates
a closed-loop gain change of 137 and rise-time change of 78%. These
results completely disagree with the zero sensitivity obtained from
Eq. (5). |
The above examples.demonstrate that the form of Bode-Truxal's
sensitivity function, Eq. (1), is troublesome when used as a measure of
a pole sensitivity under the following vonditions:
(1) When the pole of the closed-loop transfer function, whose
sensitivity is desired, has multiplicity greater than one.
(ii) When the pole of the closed-loop transfer function, whose
sensitivity is desired, is at the origin. |
(iii) When the pole, or zero, of the open-loop transfer function,
with respect to which the closed~loop sensitivity is de-
sired, is at the origin.
The first two conditions have been shocws tc yield infinite sensitivity
while the third condition yields zero sensitivity.
It should be mentioned that the Bcde-Truxal sensitivity definition,
Eq. (1) does give correct sensitivity measure under the condition implied
by its mathematical form; that is, when the change of x is a differential,
dx. However, in nearly every practical system the change of open-loop
parameter x is an increment Ax rather than a differential. Therefore,

Eq. (1) has practical significance only if

d 1nQ _ _4 InQ
d Inx A Inx (26)

Eq. (26) is not true under the three conditions mentioned above.

Ur3 proposed the following definition of sensitivity



s ds,
b4 dx
X

where sj is the closed-loop pole and x can be any open-loop parameter
including gain, pole, or zero. While this definition does not give an
infinite sensitivity under condition (ii), it still shows infinite and
zero sensitivity under conditions (i) and (iii), respectively.
Chang4 has used the definition of sensitivity for a closed-loop
pole sj with respect to a parameter x as
s ds,

X dx (27)

This definition is better than those of Eqs. (1) and (26), since it
yields finite sensitivity under conditions (ii) and (iii). But under
conditions (i), when the multiplicity of the closed-loop pole is greater
than one, the partial derivative of Eq. (27) does not exist.

In the following section a definition of sensitivity which is more
convenient for engineering applications, will be proposed and its effec-

tiveness will be demonstrated.



PROPOSED DEFINITIONS OF POLE SENSITIVITY

In general, the relation between the variation of a closed-loop

pole Asj due to a variation of an open-loop parameter Ax can be express-

ed in terms of a Taylor series as

Ox = aIASj + aZCAsj)z + a3(Asj)3 + --e-
©
> r
= = ar(Asj) (28)
T
where a_ = —%T d :
‘ dsj

when the closed-loop pole is of multiplicity m, the first m-1 coefficients

of Eq. (28) vanish, (See Appendix II) i.e.
a, =a, =----a = 0. (29)

Under this condition Eq. (28) becomes

‘ r
Ox = = ar(Asj) . (30)

The single term approximation of this equation is

E m
Mx = am(Asj) (31)
1 d"x
where a_ = ——
m m' m
ds,

When the parameter x is the open-loop gain K, the division of

Eq. (31) by K yields
a

K _ m m
- 28 )) (32)

K
due to the availability of the coefficients of Eq. (32) the sensitivity
of the closed-loop pole sj with respect to the open-loop gain K may be

defined as

s, Gﬁs.)m
sKJ = e (33)
K
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Using Eqs. (31) and (32), Eq. (34) then becomes

S, '
Jj_ m. K
SK -————-—de (34)
ds?
J

Eq. (33) or (34), gives a measure of closed-loop pole deviation due to
the fractional change of open-loop gain. For AK small Eq. (33) approaches

its differential form,

m
55 (ds.) m
SK = —EZTéET_ pole /neper (35)

where the gain variation d 1InK is in nepers. If the unit of gain

variation in db is desired, Eq. (35) becomes

5.3 = 0.115 SeUMTREES, (36)
K : d (1nK) Q"
ds
3
When the parameter x is the open-loop pole or zero, the sensi-
tivity of the closed-loop pole with respect to x is defined as
s 3 - G (37)
x Ox ‘
Using Eq. (31), Eq. (37) becomes
s d - —mi__ (38)
X dmk
ds?
]

Eq. (37) or (38) gives a measure of the closed-loop pole variation due
to the variation of the open-loop pole or zero.

Ifi essense, the proposed sensitivities, Egs. (34) and (38), are
defined to be the reciprocal of the first non-zero coefficient of the

Taylor series expansion in Eq. (28).



Examining the form of Eqs. (34) and (38), one can easily see
that these sensitivity functions do not suffer any difficulty under

conditions (i), (ii) and (iii) described in previous section.
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EVALUTION OF SENSITIVITIES

If Eqs. (34) and (38) are used to evaluate the sensitivities
s

SKJ and SxJ respectively, it is necessary to obtain the m-th derivatives

by repeated differentiation, a process which is very cumbersome for any

second or higher order system. Following the approach of Papouliss,
who suggested a method of determining the zeros of the impedance function
due to incremental variations in the network element, the variation of
the closed-loop pole due to the variation of the open-loop parameter
can be obtained in a much easier manner.

The characteristic equation of the closed-loop system shown in
Fig. 1 is

p{s) + Kq{s) = 0 , (39)

where p(s) and q(s) are respectively the denominator and numerator
polynomials of the open-loop function. The values of various sensitivity

functions defined in the third section are given by the following

formulas:
. (05"
S3= _AKL—_ =_[(S ) sj)mT(s)J S——>§ , (40)
K X ]
where T(s) = 1 E é(s) .
m m
ssj ) (8s ) ) (s - 5.)7p(s) ] @)
TN L B(s) +Xa(s) (s -c;)

S—>8,
J

where a& is the pole of open-loop function whose variation causes the

closed-loop sj to vary.

m
sj [ (s - 8.)
s 1 = |——A— 1(s) (42)
Bi (S - Bj) S—>8S.

i

where Bi is the zero of open-loop function whose variation causes the

closed-loop pole to vary.

The derivation of Eqs. (40) through (42) are included in Appendix
IIT.




12

The sensitivities evaluated using these formulas are indeed con-
sistent with the proposed definitions in the third section. This is
proved in Appendix IV.

Although the derivation here is for unit feedback system, the
results can be applied to non-unity feedback éystem with the aid of

block diagram transformation.
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EXAMPLES
- . . _ 25
Example 1. Referring to Fig. 1, let G(s) = —gzg—:fiaj— . Then
T(s) = ————Zé-—z— which has a double pole at s, = -5. Find the sensi-
J
(s + 5)
s
tivity sKj. .
From Eq. (40), the sensitivity SKj can be found as
s (as )"
Joo— 10 s -
Sg = E; sj)mT(si]S__’sj
=—{}s +5)2 — 2 ] =-25. (43)
(s + 5)"
s—» -5

Let the gain of G(s) change-4%, i. e. AK =-1, then the variation of the

closed-loop pole can be obtained from

]
m _ 2 _ K j
= (0.04)(25) = 1
Asj =+1 (44)

To check the reliability of Eq. (43), one easily finds the new closed-

loop transfer function

24
(s + 6)(s + 4) °

which shows the variation of the cloéed-loop pole is indeed Asj =+ 1.

T'(s) =

Example 2. Referring to Fig. 3, let

-1 -1
6(z) 1.2z (1 - ?i823z )

a-z7)

then
1.2(z - 0.833)
T(z) 2(z - 0.8)

which has a pole at the origin. Considering a 207% change of open-loop
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S.
from K = 1.2 to K + AK = 1.44 find sKJ with s, =0 and 0.8.
Again use Eq. (40),

s.=0
i _ 1.2(z - 0.833) -
SK % 2(z - 0.8) - 1.25, (45)
and
®3=0.8
sKJ ° 1.2(z - 0.833) = -0.0495. (46)
=|(z - 0.8)
’ z(z - 0.8) z—>0.8
The variation of the closed-loop poles are obtained from
m X sj
(Asj) B _E—— SK
giving,
at Sj =0, As, = (0.20)(1.25) = 0.250 (47)
J
at s, = 0.8, Asj = (0.20)(-0.0495) = 0.0099 (48)

J
To check the results, one finds the new closed-loop transfer function
1.44(z - 0.833)

' -
T'(2) = —7570.249)(z - 0.809)
indicating
at sy =0, 4s; = 0.249 (49)
at s, = 0.8, s, = -0.009 (50)

Eqs. (45) and (50) confirms the results of Eqs. (47) and (48) which

were obtained by using the new sensitivity function.

10
s(s + 11)
10
(s + 1)(s +10) °
the sensitivity of the closed-loop poles with respect to open-loop pole

at 0%l= 0.
Using Eq. (41)

s.=-1 :
j |l (s + 1)s(s +11) _
%ﬁi - [ (s + 1)(s + 10)3‘]s - L1 (1)

Example 3. Using again Fig. 1, let G(s) =

which has a pole at the origin. The T(s) = Find
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¢ i=-10 _[ (s + 10)s(s + 11) ]

= = -0.111 (52)
Ay (s + 1)(s + 10)s = -10
Assuming a change of open-loop pole ACKi = -0.2, the variations of the
closed loop pole are obtained from, by Eq. (37),
m sj
(Asj) = AKX so<i
giving
Asj = (~0.2)(1.11) = -0.222 for sj = -1, (53)
Asj = (~0.2)(-0.111) = +0.0222 for sj = ~10 (54)
To check the results, one first obtains the new closed-loop transfer

function
10
(s + 1.222)(s + 9.98)

The exact wvariations of the closed loop poles are therefore

T'(s) =

Asj = -0,222 for sj = -1, (55)

Asj = +0.02 for sj = -10. (56)

which compare very well with Egs. (53) and (54).

The following table summarizes and compares the results of the
above examples to the results one would have if the conventional sensi-
tivity function, Eq. (1), was used. One, therefore, sees the reliability

of the proposed definitions of pole sensitivity.
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CONCLUSION

In this paper the inconvenience of the conventional definitions
of pole sensitivity have been examined and discussed. New definitions
of pole sensitivity have been proposed. In essence, the proposed sensi-
tivities are defined to be reciprocal of the first non-zero coefficient
of the power series, Eq. (28). Convenient method of evaluating the new
sensitivity function was explored. Examples were given to illustrate
the merits and the reliability of new definitionms.

Further research to apply the proposed definition of pole sensi-

tivity to network theory is under way.
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APPENDIX I, DERIVATION OF EQS. (4) THROUGH (7)

Let the open-loop transfer function shown in Fig. 1 be

G(s) = —ngg%- , where K is the gain of the open-loop function. Thus
the characteristic equation is:
p(s) + Kq(s) = 0. (57)
(i) When the open-loop gain K is the variable parameter, the

differentiation of Eq. (57) with respect to K, gives

ds _ q(s)
dK =" Tp'(s) + Kq' (s) (58)

The sensitivity is then

o8 _.d1ns _ _ Kq(s) 1
“K d 1nK p'(s) + Kq'(s) s

(59)

At a particular closed-loop pole Sj’ the pole sensitivity with respect

to the gain K is

ds,
ssj _ 5 .. Kq(s) 1 - . _is..L. (60)
K dK p'(s) +Kq'(s) s s, ?
X 5% ;
- Kq(s)
where ksj pT(s) + Kq' (5)
s = sj

Eq. (60) is the same as Eq. (4).
(ii) When the open-loop pole O&i with multiplicity r, is the

variable parameter, Eq. (60) becomes
p;(s)(s - &)™ +Ka(s) = 0, (61)
p(s)

(s - )"

where pi(s) =

Differentiating Eq. (61) with respect to AL

r, -1
p'(s) + Kq'(s) ds = ripi(s)(s - cﬂi) . dc&i
p(s) i - - Kq(s) i (62)

P(5) +Ka'(s) s -, P () FKa'(s) 5 - X

ds _
then, d?‘i =

19
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20

The sensitivity of the closed-loop pole sj with respect to the open-

loop pole 0‘i is

ds,
S S B [ Kq(s) i1
o, dA&; Ls p'(s) +Kq'(s) s -y
X 57 %
ks iri sJ 1r1
= -[ s] s - . %% .-k (63)
J J 1 J 1

variable parameter, Eq. (57) becomes

u
P(s) +Rq (s)(s - 8;) ' =0, (64)
where qi(s) = q9(s) U
(S = Bi)
Differentiating Eq. (64) with respect to B>
ds _ _ Kq, (s) _ Kq(s) Yy
dg; p'(s) +Kq'(s) p'(s) +Kq'(s) s -B; °

The sensitivity of the closed-loop pole sj with respect to the open-1loop

zero B, is then

ds,
AP B Kq(s) PiYs ]
B, dB; s p'(s) +Ka'(s) s -B; oo
— j
By
I"ks,] B.u, s, B.u,
= i i'i j o Fiti
= = -8 7 ——=, (65)
L 5 s, - By K s -8

This is Eq. (6).




APPENDIX II. PROOF OF EQ. (29)
In Fig. 1, the characteristic equation of the closed loop system
is
D(s, Xx) =p +Kq=0 (66)
where x is a system parameter and s is Laplace transform variable. If

D has a root 8» of multiplicity m, one can write

D(s) = (s - sl)le(s). (67)
Note that
k = 0 for k=1, ----, m-1
dsk D(s, x) . (68)
s = s, X0 for k = m
1
Taking the differential of Eq. (67),
dx _
Ds + Dx ds =0
or
D
dx _ 5
ds =~ D (69)
X

where Ds and Dx are the derivatives of D with respect to s and x, re-

spectively. By Eq. (68), one finds

dx Ds
A v =0 (70)

By repeatedly differentiating Eq. (69) and using Eq. (68), one easily
find

s = 1

dkx =0 fork=1, 2, ----, m-1,
k (71)
ds s =5, X0 fork=m
Therefore,
1 dkx =0 for k =1, 2, -=---, m-1
Y, K (72)
ds s = s =0 for k £ m.

21
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APPENDIX III. DERIVATION OF EQS, (40) THROUGH (42)

In Fig. 1, the open-loop tramsfer function is

- Ka(s)
G(s) p(s) ° (73)
The closed-loop transfer function is
__C(s) _ Kq(s)
T =R ™ T3 + Ka(a) ht

which has a pole s, of multiplicity m.

3
First find the sensitivity of the closed-loop pole sj with re-
spect to open-loop gain K. For a normal value of gain K, the closed=-

loop pole sj satisfies the equation,

p(sj) + Kq(sj) = 0. (75)

If the gain K changes to K + AK, the new closed-loop pole sj must
satisfy the equation

p(sa) + K +-AK)q(S3) =0

P(Sg) + KQ(SE) = -Q(SE)AK- (76)
(st - s)"
Multiplying both sides of Eq. (76) by d X . and rearranging the
terms,
- (s! - s)"
v o mo_ N J ' A_
S I M TS ST I () an

Since p + Kq contains (s - sj)m as its factor,

1lim (sj - ?j?qu(sﬁ)

$5>%; pG]) + K1)

Therefore for small Asj = 53 - sj

m

-(s - sj)qu(S)
@s)” = | =50 + K4 (

NI%

)

S —>»S
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K
= —[(s - sj)‘“T(s)]s_’s(—K ) (78)
J

where s has been used in place of s}. Eq. (78) is the same as Eq. (40),
Next find the sensitivity of the closed-loop pole sj wih respect

to the open-loop pole CXi. Write Eq. (75) as

(s; - &P, (s)) +Ka(sy) = 0, (79)
where cii is the open-loop pole and
p(s)
py(s) = 54— (80)
i

For a change of o& by Acxi, the new closed-loop pole must satisfy

L. - L ' =
(sj cxi Acﬂi)pi(sj) + Kq(sj) 0
or

(s ~ O%)p; (s}) + Ka(s}) = by (s1)A0K,. (81)

Multiplying this Eq. (81) by (s3 - sj)m,

m
s! - 5.} p.(s!
(J )pl(J)

(s} - )" = ——— . T A
j j (sj di)p(sj) + Kq(sj) i
) m AN
- (Sj = Sj) Pi(bj} Ad
PG + Kq(s)) i
(s - sj>“‘p(s) ~ -
T [] ] A .
(s7- &) pG}) + Ka(s)) i

By the same method used to obtain Eq. (78),

m
m_ [ (s - 5,)"(s) i .
el Ui g &) p(s) + Ka(s) Gy (83)

S—s 5.
J

Eq. (83) is the same as Eq. (41)
Finally, the sensitivity of the closed-loop pole sj with respect
to the open-loop zero p; can be derived in a similar manner.



APPENDIX IV, THE EQUIVALENCE OF EQS. (33) AND (40)

In Fig. 1 the characteristic equation of the closed-loop system is

p(s) + Kq(s) = 0. (84)
If K is the variable parameter then it may be written as
2
dK 1 d K 2
K=K, +—0— 88y + 5 —Z(Asj) +---- (85)
i ds
|
Then by Egqs. (32) and (33)
m
A Il LA Y, <
g = = (86)
d"K d"K
ds ™ as™
J §—>»8
When m=1, using Eqs. (84) and (86), .
s,
g J K - . Kq(s)
K dKk p'(s) + Kq'(s)
it S—aS,
ds J
s = s,
J
=-[(S - Sj)T(S)]S = 5. (87)
J
- _C(s) _ Kq(s)
where T(s) = R(s)~ - p(s) + Ka(o) - (88)

when m=2, Eqs (84) and (86) give

Ssj |2« ~ ___2'Kq(s)
= = T (i Tt
K dZK L-p (s) + Kq''(s) S sj
ds2
s—»sS,
T 2
= -h(s - Sj) T(s):ls__,sj (89)
In general, therefore, when m=m, one has Eqs. (84) and (86)
S, T 1]
o3 _|_miK _ | __mikq(s)
K d"x P (s) +Ka(s) J, _
ds™ 3
s = s,
]
- -[(s - sj)mT(s)]s - s (90)

This is the same as Eq. (40)

In a similar manner, one can show the equivalence of Egs. (37) and

41), (42).
(41), (42) "
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